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In this document, we provide additional experimental results in
support of the conclusions drawn in the primary text. The figures to
be presented and their corresponding subjects are listed as follows:

• Fig. 1 and Fig. 2 showhow the pixel loss lpixel (namely L1 loss)
varies with the training steps and the validation steps. lpixel is
an important metric that evaluates our model’s performance
of accurately reconstructing the target glyphs (lower is better).
We calculate our model’s L1 loss on the validation dataset
every 400 training steps. We randomly select 28 fonts from
the labeled fonts and match them for the 28 fonts in the
validation dataset. All models in Fig. 2 use the same source
fonts for fair comparison. We can see that the loss curve
elevates dramatically with the removal of skip-connection
from ourmodel. Both the AAMand the VST boost ourmodel’s
performance in a significant degree.

• Fig. 3: the effect of the choice of source font in the inference
stage.

• Fig. 4: the impacts of different modules in our model.
• Fig. 5: generating Chinese fonts from attributes.
• Fig. 6, 7, 8 and 9: generating English and Chinese glyph images
by interpolation between the attribute values of two different
fonts.

• Fig. 10, 11, 12 and 13: editing English Chinese fonts by chang-
ing the value of a single attribute.

• Fig. 14 and 15: comparison of our model and existing methods
of attribute-controllable image synthesis, includingAttGAN [He
et al. 2019], StarGAN [Choi et al. 2018], RelGAN [Wu et al.
2019] and STGAN [Liu et al. 2019].

• Fig. 16: comparison of our model and two existing font re-
trieval methods ( [O’Donovan et al. 2014] and [Chen et al.
2019]).

• Fig. 17: comparison of StarGAN+AAM and StarGAN.
• Fig. 18: the glyph images of a whole char-set generated by
our method from random attribute values.

• Fig. 19: some continuous texts rendered by our model’s gen-
erated fonts.
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Fig. 1. The L1 losses of our models with different configurations in the
training process.
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Fig. 2. The L1 losses of our models with different configurations in the
validation process.
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Fig. 3. Generating glyph images with the same target attribute values from different source fonts. The pixel value of each grayscale grid represents each
attribute’s value. A darker grid indicates a higher attribute value. In the following figures we use the same way to display attribute values.
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Fig. 4. The glyph images generated by our models with different configurations. w/o denotes without. “SL”, “SC”, “VST” and “AAM” denote semi-supervised
learning, skip-connection, Visual Style Transformer and Attribute Attention Module, respectively.
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Fig. 5. Generating Chinese fonts from attributes.
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Fig. 6. Generating English glyph images of upper cases by interpolation between the attribute values of two different fonts. Three interpolation processes
(Font 1 to Font2, Font 2 to Font 3, Font 3 to Font 4) are presented in succession.
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Fig. 7. Generating English glyph images of lower cases by interpolation between the attribute values of two different fonts. Three interpolation processes
(Font 1 to Font2, Font 2 to Font 3, Font 3 to Font 4) are presented in succession.
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Fig. 8. Generating Chinese glyph images by interpolation between the attribute values of two different fonts (Part 1). Three interpolation processes (Font 1 to
Font2, Font 3 to Font 4, Font 5 to Font 6) are presented in succession.
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Fig. 9. Generating Chinese glyph images by interpolation between the attribute values of two different fonts (Part 2). Three interpolation processes (Font 7 to
Font 8, Font 9 to Font 10, Font 11 to Font 12) are presented in succession.
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Fig. 10. Editing English fonts by changing the value of a single attribute (Part 1).
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Fig. 11. Editing English fonts by changing the value of a single attribute (Part 2).
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Fig. 12. Editing Chinese fonts by changing the value of a single attribute (Part 1).
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Fig. 13. Editing Chinese fonts by changing the value of a single attribute (Part 2).
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Fig. 14. Comparison with existing methods of attribute-controllable image synthesis (Part 1).
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Fig. 15. Comparison with existing methods of attribute-controllable image synthesis (Part 2).
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Fig. 16. Comparison of our model and two existing font retrieval methods.
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Fig. 17. Comparison of StarGAN+AAM and StarGAN. The input images are selected from a publicly-available database [Liu et al. 2015] whose training set is
adopted to train the models. The red rectangles emphasize some cases where StarGAN+AAM significantly differs with StarGAN.
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Fig. 18. The glyph images of a whole char-set generated by our method from random attribute values.
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Fig. 19. Some continuous texts rendered by our model’s generated fonts. We manually adjust the offsets of some characters. Font 1 is generated from a
random set of attribute values. Font 2 and Font 3 are generated from two sets of attribute values in the validation dataset.


